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Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form
nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing.
Boyland, Aref, and Stremler �J. Fluid Mech. 403, 277 �2000�� have studied a specific periodic motion of rods
that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases
where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic
points that we call “ghost rods”, because they play a similar role to stirring rods. The ghost rods framework
provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and
mixing. Numerical simulations for Stokes flow support our results.
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I. INTRODUCTION

Low-Reynolds-number mixing devices are widely used in
many industrial applications, such as food engineering and
polymer processing. The study of chaotic mixing has there-
fore been an issue of high visibility during the last two de-
cades. A first step was taken by Aref �1�, who introduced the
notion of “chaotic advection”, meaning that passively ad-
vected particles in a flow with simple Eulerian time depen-
dence can nonetheless exhibit very complicated Lagrangian
dynamics due to chaos. Chaotic advection has been demon-
strated in many systems since: For a review see Ref. �2� or
�3�. However, all the systems considered had a fixed geom-
etry: Even if the boundaries were allowed to move, as for
instance in the journal bearing flow �4�, the topology of the
fluid region remained fixed.

A new aspect was recently investigated by Boyland et al.
�5�. In an elegant combination of experimentation and math-
ematics, the authors introduced to fluid mechanics the con-
cept of “topological chaos”. They studied two different peri-
odic motions of three stirrers in a two-dimensional circular
domain filled with a viscous fluid. They then used Thurston–
Nielsen �TN� theory �6,7� to classify the diffeomorphisms
corresponding to the different stirring protocols. �The diffeo-
morphism is a smooth map that moves the fluid elements
forward by one period.� As the stirrers moved, the geometry
changed in time. The authors labeled the protocols using the
braid formed by the space-time trajectories of the stirrers. In
Fig. 1 we show a space-time plot that illustrates how the
trajectory of the rods can be regarded as a braid, for the same
“efficient” braid presented in Ref. �5�.

Boyland et al. then used TN theory to determine which
stirring protocols generate “pseudo-Anosov” �pA� diffeomor-
phisms: a pA diffeomorphism corresponds roughly to expo-
nential stretching in one direction at every point, and is thus
a good candidate for efficient mixing. A relevant measure of
the chaoticity of the flow is the maximum rate of stretching
of material lines. In two dimensions this is equivalent to the

topological entropy of the flow �8�. In the pA case the braid
formed by the stirrer trajectories gives a lower bound on the
topological entropy of the flow regardless of flow details
�e.g., Reynolds number, compressibility,¼�—hence the term
“topological chaos”. A pA braid can only be formed with
three or more rods, since two rods cannot braid around each
other nontrivially, and one rod has nothing to braid with. In
stirring protocols with pA braids it is thus possible to predict
a minimum complexity of the flow, as opposed to systems
that require tuning of parameters to observe chaos. Such uni-
versality is, of course, desirable for mixing applications.

In this article we present another aspect of what was de-
scribed as “topological kinematics” by Boyland et al. �9�. We
study flows with only one stirring rod that have positive
topological entropy, even though the braid traced by the stir-
rer is trivial. We apply the topological theory to these sys-
tems by considering the braid formed by periodic orbits of
the flow as well as the stirrer itself. This allows us to account
for the nonzero topological entropy of the flow. The periodic
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FIG. 1. �Color online� The trajectories of the N stirrers define a
braid on N strands in a space-time diagram �here N=3�, with time
flowing from bottom to top. The periodic movement of the stirrers
for the protocol is represented in the two pictures on the right: first
�bottom� the two rods on the left are interchanged clockwise �we
call this operation �1�, then �top� the two rods on the right are
interchanged anticlockwise ��−2�. Two sequences of this protocol
are drawn on the 3D braid. This protocol is the pseudo-Anosov
protocol described in Ref. �5�.
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orbits �which can be stable or unstable� are created by the
movement of the rods, but they are not the same as the rod
trajectories, and in general will have different periodicity
than the rod motions. We call the periodic points “ghost
rods” because in the context of topological chaos they play
the same role as rods, even though they are just regular fluid
particles. Rather, they are kinematic rods that act as obstacles
to material lines in the flow because of determinism—a ma-
terial line cannot cross a fluid trajectory, otherwise the fluid
trajectory must belong to the material line for all times. In
fact, any fluid trajectory is such a topological obstacle �10�,
but for time-periodic systems periodic orbits are the appro-
priate trajectories to focus on. The idea of using periodic
orbits to characterize chaos in two-dimensional systems
comes from the study of surface diffeomorphisms �7�. In a
related vein, periodic orbit expansions are also used to com-
pute the average of quantities on attractors of chaotic sys-
tems �11,12�.

The study of ghost rods is important because it helps iden-
tify the source of the chaos �and hence good mixing� in a
given mixer. We will show that the main contribution to the
topological entropy in a system usually comes from a rela-
tively small number of periodic orbits. This represents a tre-
mendous reduction in the effective dimensionality of the sys-
tem, and by focusing on this reduced set of orbits it will be
easier to study and improve mixing devices. The ghost rods
framework thus provides new tools for diagnosing and mea-
suring mixing �10�. In addition, it also gives a new under-
standing of the mixing mechanisms as we can consider the
mixing to arise from the braiding of material lines around the
ghost rods.

The outline of the paper is as follows. In Sec. II we intro-
duce the mathematical theory for braids and topological
chaos. In Sec. III we study examples with one rod moving on
different paths. We show that some periodic orbits braid with
the stirrer. In Sec. IV we show that we can account for an
arbitrary percentage of the observed topological entropy of
the flow with such a braid. The main conclusions and an
outlook on future research are presented in Sec. V.

II. BRAIDS AND DYNAMICAL SYSTEMS

Overview of Thurston–Nielsen (TN) theory

The mathematical setting for studying braiding in fluids
mechanics is centered on the N-punctured disk in two dimen-
sions RN. The N punctures, located somewhere in the interior
of the disk, represent the stirring rods. If the stirrers undergo
a prescribed periodic motion, they return to their initial po-
sition at the end of a full cycle. Naturally, the rods have
dragged along the fluid, which obeys some as yet unspecified
equations �e.g., Stokes, Navier–Stokes, Euler, non-
Newtonian equations, assumption of incompressibility,¼�.
The position of fluid elements is thus determined by some
function ��x , t�. Assuming the flow is periodic with period
T, ��x ,T� is a map from RN to itself, and we define

f:RN → RN, f�x� = ��x,T� . �1�

For any realizable fluid motion, f will be an orientation-
preserving diffeomorphism of RN. The map f takes every

fluid element to its position after a complete cycle. It is a
diffeomorphism because the physical fluid flows we consider
are differentiable and have a differentiable inverse. The map
f embodies everything about the fluid movement, and it is
thus the main object to be studied.

But in some sense f contains too much information: it
amounts to a complete solution of the problem, and there are
interesting things we can say about the general character of f
without necessarily solving for it. We are also interested in
knowing what characteristics of the stirrer motion must be
reflected in f . This is where the concept of an isotopy class
comes in: two diffeomorphisms are isotopic if they can be
continuously deformed into each other. This is a strong re-
quirement: continuity means that two nearby fluid elements
must remain close during the deformation, and so they are
not allowed to “go through” a rod during the deformation,
otherwise they would cease to be neighbors. In that sense,
isotopy is a topological concept, since it is sensitive to ob-
stacles in the domain �the rods�. The isotopy class of f is then
the set of all diffeomorphisms that are isotopic to f . In fact,
an entire class can be represented by just one of its members,
appropriately called the representative. Of course, the impor-
tant point here is that not all diffeomorphisms are isotopic to
the identity map. Note that the overwhelming majority of f
are not allowable fluid motions �i.e., they cannot arise from
the dynamical equations governing the fluid motion�, but any
allowable fluid motion must belong to some isotopy class.

The problem now is to decide what isotopy classes are
possible, and what this means for fluid motion. Thurston-
Nielsen �TN� theory �6,7� guarantees the existence in the
isotopy class of f of a representative map, the TN represen-
tative f�, that belongs to one of three categories:

�1� Finite-order: if f� is repeated enough times, the
resulting diffeomorphism is isotopic to the identity �i.e., f�m

is isotopic to the identity for some positive integer m�;
�2� Pseudo-Anosov �pA�: f� stretches fluid elements

by a factor ��1, so that repeated application gives exponen-
tial stretching;

�3� Reducible: f� leaves a family of curves invariant,
and these curves delimit subregions that are of type �1� or
�2�.

A famous example of an Anosov map is Arnold’s cat map
�13�. A pA map is an Anosov map with a finite number of
singularities. The TN theory also states that the dynamics of
a diffeomorphism in a pA isotopy class are at least as com-
plicated as the dynamics of its pA TN representative, mean-
ing it has a greater or equal topological entropy. For a dif-
feomorphism, the topological entropy h gives a measure of
the complexity, i.e., the amount of information that we lose
at each iteration of the map �8�. It also describes the expo-
nential growth rate of the number of periodic points as a
function of their period. Newhouse and Pignataro �8� noticed
that h also gives the exponential growth rate for the length of
a suitably chosen material line. In the numerical simulations
described below, we use this fact to compute the topological
entropy of a flow: We consider a small blob in the chaotic
region of the flow and we calculate the growth rate of its
contour length.

TN theory tells us about the possible classes of diffeomor-
phisms that can arise from the periodic motion of the stirrers.
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But one can also consider the trajectories of the punctures
�here the stirrers� in a three-dimensional �3D� space-time plot
�Fig. 1�, where the vertical is the time axis. These trajectories
loop around each other and form a physical braid. The cru-
cial point is that such a braid constructed from the rod tra-
jectories specifies the isotopy class of f , no matter the details
of the flow. �See Refs. �5,7,9,14� for further details.� As a
consequence of the TN theory, the topological entropy of this
braid is a lower bound on the topological entropy of the flow.

Hence, determining the isotopy class of the diffeomor-
phism f is equivalent to studying the braid traced by the
stirrer trajectories. This is a drastic reduction in complexity,
because we are free to impose relatively simple braiding on
the stirrers by means of a short sequence of rods exchanges,
whereas the resulting diffeomorphism obtained by solving
the fluid equations can be quite complicated. In the next
section we introduce the machinery needed to characterize
braids.

A. Artin’s braid group

Let us introduce the notation for braids. The generators of
the Artin braid group on N strands are written �i and
�i

−1
¬�−i, which represent the interchange of two adjacent

strands at position i and i+1. The interchange occurs in a
clockwise fashion for �i �i goes over i+1 along, say, the y
axis� and anticlockwise for �−i �i goes under i+1�. For N
strands, there are N−1 generators, so i� �1, . . . ,N−1�. It is
thus possible to keep track of how N rods are permuted and
of the way they cross by writing a braid word with the “let-
ters” �i. We read braid words from left to right �that is, in
�1�3�−2 the generator �1 precedes �3 temporally�. For ex-
ample, the pA stirring protocol described by Boyland et al.
�5� and shown in Fig. 1 corresponds to �1�−2: It consists of
first interchanging the two rods on the left clockwise ��1�
and then interchanging the two rods on the right anticlock-
wise ��−2�. Note that the i index on �i refers to the relative
position of a rod �e.g., second from the left along the x axis�
and does not always label the same rod.

The generators obey the presentation of the braid group

�i� j�i = � j�i� j if �i − j� = 1, �2a�

�i� j = � j�i if �i − j� � 2, �2b�

that is, the relations �2� must be obeyed by the generators of
physical braids, and no other nontrivial relations exist in the
group �14�. The relation �2a� corresponds physically to the
“sliding” of adjacent crossings past each other, and �2b� to
the commutation of nonadjacent crossings.

The braid group on N strands has a simple representation
in terms of �N−1�� �N−1� matrices, called the Burau repre-
sentation �15�. For three strands �N=3�, the topological en-
tropy of the braid is obtained from the magnitude of the
largest eigenvalue of the Burau matrix representation of the
braid word. This is the technique used in Refs. �5,9,16,17� to
compute topological entropies. For N�3 the Burau repre-
sentation only gives a lower bound on the topological en-
tropy of the braid �18�, so a more powerful algorithm must
be used to obtain accurate values. Here we use the train-

tracks code written by Hall �19�, an implementation of the
Bestvina-Handel algorithm �20�. The train-tracks algorithm
works by computing a graph of the evolution of edges be-
tween rods under the braid operations. It suffices for our
purposes to say that train tracks determine the shortest pos-
sible length of an “elastic band” that remains hooked to the
rods during their motion—the minimum stretching of mate-
rial lines �21�.

III. EVIDENCE FOR GHOST RODS

A. Motivation

We consider here the advection of a passive scalar in a
two-dimensional batch-stirring device containing a viscous
fluid that obeys Stokes’ equation. The batch stirrer includes
circular cylinders—the stirring rods—that undergo periodic
motion. The exact velocity field for one circular rod in a
Stokes flow was derived in Ref. �22�. For more than one rod
there is no exact expression available for the velocity field,
so we use instead a series expansion suggested by Finn et al.
�17�. We use an adaptive fourth-order Runge-Kutta integrator
for the time stepping.

We study first a configuration of the translating rotating
mixer �TRM� defined by Finn et al. �22�. The system consists
of a two-dimensional disk stirred by a circular rod that
moves around in the disk. The center of the rod moves on an
epicyclic path �in a time period T� given by

x�t� = r1cos 2	mt/T + r2cos 2	nt/T ,

y�t� = r1sin 2	mt/T + r2sin 2	nt/T , �3�

as shown in Fig. 2. Note that such a path can be implemented
in a real mixing device using straightforward gearing. It is
possible to choose very complicated trajectories by changing
m and n; however, we limit ourselves to the comparatively

FIG. 2. A rod traveling on a epicyclic path. The trajectory of the
rod encloses two different regions, a loop and a crescent.
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simple case m=1 and n=2. The other parameter values used
here are r1=0.2, r2=0.5. The radius of the outer disk is 1 and
we tested configurations with different values for the rod
radius ain.

There is only one rod, so the one-strand braid formed by
the stirrer is trivial. Topologically, the motion of this single
rod does not imply a positive lower bound on the topological

entropy of the flow. This does not mean that material lines
cannot grow exponentially for this flow. We have plotted in
Fig. 3�a� the image of a small blob, i.e., a circle enclosing the
rod at t=0, after just four periods of the flow with ain
=0.05. The small blob has been tremendously stretched, sug-
gesting exponential growth.

Furthermore, note some similarities with another stirring
protocol, where the rod is moving on the same path but we
have added two fixed rods in the regions enclosed by the
moving rod’s trajectory �Fig. 3�b��. For this protocol the
braid formed with the stirrers is �−2�−1�−1�−1�−1�−2 �17�
with topological entropy hbraid=1.76. �From now on, we shall
use hbraid to denote the topological entropy of a braid, which
is a lower bound on the corresponding flow’s topological
entropy, hflow: hbraid
hflow.� Thus we expect the efficient
stretching displayed in Fig. 3�b�. The braid’s entropy is a
lower bound for the entropy of the flow, and we indeed mea-
sure hflow=2.38. �We recall that we compute hflow by calcu-
lating the exponential rate of growth of material lines in the
chaotic region.�

There is thus a discrepancy in that the motion of the rod in
Fig. 3�a� does not account for the observed exponential
stretching of material lines, at a rate given by hflow=2.32. An
indication of the source of the missing topological entropy is
that this rate is comparable to the one observed in the proto-
col of Fig. 3�b�, hflow=2.38, where extra obstacles are
present. We shall see in the following sections that the “miss-
ing” topological entropy can be accounted for by looking at
periodic orbits in the flow and their topological effect on
material lines.

B. Elliptic islands as ghost rods

In Sec. III A we saw that much of the topological entropy
in a one-rod protocol could be accounted for by adding two

FIG. 3. �Color online� �a� The stretching of a small blob initially
surrounding the moving rod. �b� Same as in �a�, except two extra
fixed rods are inserted in the flow. The patterns made by the blob in
�a� and �b� look similar, suggesting that there are invisible topologi-
cal obstacles in �a� as the fixed rods in �b�. Note in particular the
similarity between the fixed rod inside the loop in �b� and the way
the line wraps itself around an invisible obstacle inside the loop in
�a�.

FIG. 4. Poincaré section for a protocol with one rod traveling on
a figure-eight path �dashed line�. Two regular islands are present
inside each loop of the rod’s path. They are topological obstacles
that form a nontrivial braid with the rod.
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fixed rods to the flow. These fixed rods modify the flow, but
they do not significantly modify the topology of advected
material lines compared to the single-rod case �Fig. 3�.
Hence, for the TRM with only one rod we observe that ma-
terial lines grow as if rods were present inside the loops
traced by the physical rod’s trajectory. This justifies intro-
ducing the notion of ghost rods: something inside the physi-
cal rod’s trajectory is playing the role of a real rod, and we
shall soon see that in this case elliptical islands are the cul-
prits. These islands braid with the physical rod, and taken
together they give a positive topological entropy. In general,
we refer to periodic structures of the flow �islands or isolated
points� as ghost rods when they play a role in determining
the topological entropy. These are topological obstacles and
are thus candidates for forming nontrivial braids. The topo-
logical approach puts all periodic structures—orbits and
rods—on the same footing.

The introduction of ghost rods becomes even more rel-
evant if one considers the one-rod protocol pictured in Fig. 4.
The rod is moving on a figure-eight path, traveling clockwise
on the left circle of the eight and anticlockwise on the right
circle. A Poincaré section reveals two small islands inside
both circles �see Fig. 4�. Initial conditions inside these is-
lands remain there forever and are thus topologically equiva-
lent to a fixed rod inside each circle of the figure eight. By
studying the motion of the rod closely, it is easy to show that
the braid formed by the rod and the islands is �1�−2�−2�1,
which has a topological entropy hbraid=1.76. Indeed, we
measure a topological entropy hflow=2.25, which is greater
than 1.76. �We shall account for the difference with the mea-
sured topological entropy of the flow later.� Hence, although
elliptic islands are usually considered barriers to mixing,
they can also yield a lower bound on the topological entropy
of the region exterior to them. All the results presented here
for the figure-eight protocol are for the parameters a=0.35
�radius of the circles forming the eight�, ain=0.04 �radius of

the rod� and aout=1 �radius of the outer circle�.
So far we have only considered period-1 islands that stay

inside the regions bounded by the rod’s trajectory, but this is
not always possible. In general we have to consider more
complicated orbits. For instance, the two islands inside the
eight �Fig. 4� are not present for protocols with a larger rod
radius ain: In that case we have not found any points that
remain forever inside one of the circles. Similarly, for the
epicyclic path �Fig. 2� there is an island inside the loop part
of the trajectory; however, any point will leave the crescent
region after a finite time because of the ascending movement
induced by the rod, so there are no fixed ghosts rods in that
region. The Poincaré section shown in Fig. 5 suggests, how-
ever, other candidates for ghost rods. First, as we noted be-
fore, there is a period 1 island that remains inside the loop
forever. Second, the Poincaré section reveals three islands
that are part of the same period-3 structure. Two “images” of
this period-3 island are inside the crescent. The braid formed
by the rod and these four islands is shown in Fig. 6.

We now have a first method of computing a lower bound
on the topological entropy of a flow: look for elliptic islands
and calculate the braid formed by the physical rod�s� �if any�
and the islands �the ghost rods�. Its entropy hbraid will be a
lower bound on the topological entropy of the flow hflow.
However, this lower bound is often not a very good one: we
show in the next section that it is possible to improve it by
considering not only islands, but also more general �un-
stable� periodic orbits.

C. Unstable periodic orbits as ghost rods

A positive topological entropy implies a horseshoe struc-
ture �23� and thus an infinite number of unstable periodic
orbits �UPO’s� in the flow. These periodic points are topo-
logical obstacles as well as the physical rods �though they
have zero size�, and hence are ghost rods. However, most
periodic points are unstable and therefore difficult to detect:
A trajectory initialized near an unstable periodic point will
diverge from the periodic orbit �exponentially for a hyper-
bolic orbit�. We use the method of Schmelcher and Diakonos
�24� to detect periodic orbits numerically. The method relies
on finding the periodic orbits of a modified version of the
flow that has the same periodic orbits, except that they are
stable in the modified flow. Diakonos et al. �25� point out
that this method selects the least unstable orbits, that is, the
least unstable orbits are found first and one has to change a
parameter in the algorithm and therefore increase the com-
puting time to find more unstable orbits. Furthermore, we are
dealing with systems with high topological entropy: As as-
ymptotically the flow has roughly exp�hflown� periodic points
of period n, systematic detection of periodic points is impos-
sible for orbits of high order. We choose rather to detect only
the least unstable orbits: We show in the next section that it
is possible to derive an accurate value of the topological
entropy of a flow from these orbits.

IV. CALCULATING THE TOPOLOGICAL ENTROPY
WITH GHOST RODS

Boyland �7�, using results by Katok �23�, proved that for
an orientation-preserving diffeomorphism of the disk there

FIG. 5. Poincaré section for the TRM protocol, showing differ-
ent kinds of topological obstacles. The physical rod is moving on an
epicyclic path whereas a regular island stays inside the loop and
three islands of period three are permuted each period. The braid
formed with the rod and these islands is shown in Fig. 6.
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exists a sequence of orbits whose entropies converge to the
topological entropy of the flow. The topological entropy can
thus be obtained from the periodic-orbit structure of the flow.
It should therefore be possible to find a periodic orbit whose
braid has a topological entropy arbitrarily close to the topo-
logical entropy of the flow. We investigate this before con-
sidering multiple periodic orbits.

A periodic orbit is self-braiding if the points in the orbit
form a nontrivial braid when taken together. Figure 7�a�
shows the topological entropy of self-braiding orbits as a
function of their period for the figure-eight protocol. Some
orbits indeed have a positive topological entropy, but their
entropy is far from the one computed with the line-growth
algorithm �hflow=2.25�, solid horizontal line in Fig. 7�a�. Fur-
thermore, very few orbits self-braid, i.e., have a positive en-
tropy. Hence, it appears that looking at the topological en-
tropy of individual orbits is not very useful: Obtaining a
reasonable approximation to the topological entropy requires
orbits of prohibitively high order or instability.

As self-braiding orbits do not seem very convenient to
approach hflow we choose rather to combine several orbits

together to form more complex braids. We first combine each
periodic orbit with the rod, and we obtain higher values for
hbraid, although still far from hflow. We also consider the
braids formed by the rod and pairs of periodic orbits, which
are also invariant sets of the first return map. We consider
pairs of orbits because this is the minimum number of orbits
that can capture the topology determined by the rod’s trajec-
tory. As is shown in Fig. 7�b�, we obtain braid entropies far
closer to the value measured for the flow: some braids ap-
proximate the measured entropy to within numerical error. It
is thus more efficient to consider combinations of orbits
rather than only self-braiding orbits: one would surely need
orbits of very high order, or very unstable, to get as close to
the measured value hflow. For this example we used a set of
52 periodic orbits whose positive Floquet exponent is
smaller than 3/T, where T is the period of the orbit. Note that
although we did not detect all or even a large number of
periodic orbits �there is an infinity of them�, our combination
of ghost rods provides us with a very good approximation of
the topological entropy of the flow. For a given system the
entropy lower bound must increase as more orbits are added
to a given braid; nevertheless we see that for the system we
consider, only a small number of orbits is needed to obtain a
satisfactory lower bound on hflow. We therefore suggest an
alternative method for calculating the topological entropy of
a flow: �i� detect some periodic orbits, �ii� calculate the maxi-
mum entropy of all the braids one can create with these
points and the rod�s�, and �iii� see if this maximum entropy
converges when one increases the number of periodic orbits.

FIG. 6. �a� Trajectories of the topological obstacles �the physical
rod and two periodic islands� shown in Fig. 5. �b� The same trajec-
tories in a space-time diagram form a braid with positive topologi-
cal entropy hbraid=1.72.

FIG. 7. �a� Some periodic orbits are self-braiding, that is, the
entropy of the braid formed by all the points of the orbit is strictly
positive. The entropy of the self-braiding orbits is plotted here vs
their period. �b� The positive entropy of braids formed by the rod’s
trajectory and pairs of periodic orbits vs the number of strands in
the braid. In both plots, the solid line is the measured topological
entropy of the flow hflow=2.25.
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V. DISCUSSION

To summarize, we have characterized chaos in two-
dimensional time-periodic flows by considering the braids
formed by periodic points and calculating their topological
entropy for different stirring protocols. We have demon-
strated the role of periodic points in fluid mixing, and called
these periodic points ghost rods because their movement
stretches material lines as real stirring rods do. This work is
an extension of the topological kinematics theory introduced
by Boyland et al. �5,7,9�, since it characterizes the mixing in
a flow by studying the topological constraint induced by the
ghost rods and not only stirrers. We expect this approach to
develop further in the near future, and to yield new insight
on efficient mixing devices.

The idea of characterizing dynamics of homeomorphisms
of surfaces by puncturing at periodic orbits dates back to
Bowen �30�, and the study of braids formed with periodic
points had already been suggested by Boyland for the gen-
eral study of diffeomorphisms of the disk �7�. In addition,
this technique is used in other fields such as the study of
optical parametric oscillators �26�. However, the present
work is to our knowledge the first study of ghost rods in fluid
mechanics.

In contrast to other applications, in our systems the ghost
rods are created by the movement of the physical rod, so we
may hope to derive some information about ghost rods from
the motion of that physical rod. For instance, let us consider
the period-3 orbit for the figure-eight protocol shown in Fig.
8 �this orbit is more unstable than the ones we used in the
previous section�. One point of the orbit is located very close
to the physical rod at t=0. Its trajectory will thus be very
close to the rod’s trajectory at the beginning of the period.
Later the rod leaves the periodic point in its trail after a time
equal to about T /3. One period later the rod drags this point
again on its trajectory as it comes close to it. This accounts
for the topological similarity between the trajectory of the
rod and the periodic orbit. The braid formed by these
period-3 orbits is �−1�2, which is also the braid studied by
Boyland et al. in Ref. �5�. It is actually the braid with the
maximal hbraid that we can form with points moving on a
trajectory strictly equivalent to the rod’s path. Indeed we
cannot form a braid with fewer than three points, and peri-
odic points with a higher period on such a path move slower
as they take longer to cover the whole path, so they have a
less efficient braiding �fewer exchanges per period�. We con-
jecture that this type of figure-eight trajectory is characteris-
tic of all mixing protocols with a rod moving on a figure-
eight path.

We have indeed found such a braid—formed by a
period-3 orbit equivalent to the rod’s trajectory—for all the
figure-eight protocols we have tested. We have tried the pro-
tocol plotted in Fig. 4 with different radii for the rod, as well
as a protocol with one rod moving on a lemniscate �a lem-
niscate is the more natural “figure-eight” shape �27��, and we

have detected this figure-eight periodic orbit associated with
the �−1�2 braid for each protocol. It is thus very tempting to
conjecture that for all the Stokes flows created by the move-
ment of a rod on a figure-eight path, the topological entropy
of the flow is greater than the entropy of the braid �−1�2, that
is, 0.96. If this conjecture holds, then ghost rods can be used
not only for diagnosing chaos and calculating the entropy of
a flow, but also topological arguments can be used to predict
a minimum entropy just from the path of the physical rod
with ghost rods in its trail. This is a generalization to ghost
rods of the arguments used by Boyland et al. �5� to predict a
universal minimum entropy from the movements of the rods
for three or more physical rods. A further natural question
then is which ghost rods have the best braid, that is, the braid
giving the topological entropy of the flow, and could we
relate these “most efficient” ghost rods to the physical prop-
erties of the flow? This will be the topic of future research.

The ghost rods approach should also be compared with
recent work on nonperiodic points. Thiffeault �10� noticed
that every fluid particle in a two-dimensional flow is a topo-
logical obstacle, much like a stirrer, and calculated entropies
of braids formed by arbitrary chaotic orbits. As these points
were not periodic points, these entropies may not give a
lower bound on the entropy of the flow for short times; how-
ever, they can yield finite-time information about the stretch-
ing rate of material lines. Furthermore, if one considers long
time series, a randomly chosen point in an ergodic chaotic
region will repeatedly come very close to periodic orbits. It
should thus be possible to observe braids with similar prop-
erties as the ones formed by ghost rods.

Finally, the study of ghost rods can be used to prove that
a map is chaotic in the case where some periodic points can
be calculated analytically, as for the sine flow map �21,28� or
the closely related standard map �29�. Finn et al. �21�, for
example, have shown that the sine flow map has chaotic
trajectories for some parameter values.
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FIG. 8. The trajectory of the rod �dashed line� and three
period-3 points belonging to the same orbit �solid line�. The posi-
tion of the rod �filled circle� and the periodic points �filled squares�
at t=0 is also shown.
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